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MULTIPLE SCATTERING BY LARGE PARTICLES

WILLIAM M. IRVINE.

ABSTRACT :
st )

The Neumann solution to the scalar equation of transfer p

/s
in a homogeneous layer of optical thickness t* €1 is obtained

numerically for sample phase functions with large forward and
backward peaks. The results are presented graphically and are

Tho™

compared with the intensities and albedos computed by seyeral
approximate methods. /éiy

I. Introduction

The problem of multiple scattering by particles whose
dimensions are comparable to or larger than the wavelength
of the radiation scattered is made difficult by the extreme
asymmetry of the individual particle scattering diagrams.
Such particles, which are predominant in terrestrial clouds
and haze, scatter radiation primarily in the forward direction.
Methods of solution for the corresponding equation of radia-
tiveitransfer are lknown in principle (Chandrasekhar 1960), but
very few exact numerical results have been obtained. The
present paper gives such exact results. The purpose 1s two-
fold: to show the effect that 2 large asymmetry in the scat-
tering diagram has on the angular distribution of diffuse light
in a plane scattering layer, and to evaluate some of the approxi-

mate methods employed in radiative transfer problems.




The calculations are intended to be illustrative rather
than to form an exhaustive critique of existing methods, and
are confined to layers of optical thickness t* ¢ 1 and to si-

tuations with azimuthal symmetry and conservative scattering.

II. Problem

We shall consider an idealized problem: monochromatic
radietion is scattered by plane-parallel, homogeneous, non-
ebsorbing layer of optical thickness t*. The angle between
a given direction and the direction of increasing optical depth
T will be designated® . The scattering per unit volume 1s
characterized by a scalar phase function (scattering indicatrix)
¢ (cos a), where a 1s the scattering angle and ¢ (cos a) 1is
asymmetric sbout a=n/2. Two alternative azimuth-independent
sources of the radiation will be considered: radiation confiﬁed
to the cone 66y incident on the top of a layer containing no
internal sources (the resulting intensity is the average over
azimuth of the intensity resulting from irradiation by a parallel
beam); or a uniform distribution of sources within the layer,
and rio radiation incident from outside. The specific intensity
of diffuse radiastion (of total radiation in the case of internal
sources) in the layer is then governed by the equation of trans-

fer in the form

pdl = -I(t,p) + I o+ T (e, (1)
dt
1
J(t,u) =1 du' F(u,u') I (1,u") ; (2)
2
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where v= cos 6, J1 is the source function for once-scattered (eq. 3a)

c: unscattered (eq. 3b) light:

Jl (t,u) = e—‘l’/uo F(u,ug)/émug , (external source) (3a)
Jl (t,u) = 1 (internal source) (3b)
and
2n
F(upu') = 1 d¢'¢(u:¢:v'90) . 4)
2n ‘o

Exact solutions to the above problem have been obtained in
only a few isolated cases (Chu et al. 1963; Romanova 1963; van de
Hulst and Davis 1961). An exception to thils statement occurs for
¢ (cos a) =1 + k cos a, but even in this case results have been

tabulated only for t = = (see Harris 1961 and Sobolev 1956).
ITT Method

As 1s well known, the equation of transfer may be rewritten
as an integral equation for the source function J, in which the

integral operator A involves an integration over both angle and

optical devth:

J(t,u) = A{J} + 3 , (5)
_ 1 T*
A{-.o} = l[ du'»F (u:u') I dT"" k(T-T'su') ’ (6)
27-1 0
1 e‘T/u ’ t/u > O
k(t,uw) = JTul (7
0 . t/u < O

A solution to this equation (the Neumann solution)} is then an in-
finite series (Busbridge 1960), each term of which involves a suc-

cessive application of the A operator to le




J(t,m) 'nzlA“—l{Jl} = 19 . (8)

Physically, this series is nothing but an expansion of the source
function in successive orders of scattering (e.g. van de Hulst

1948). The diffuse intensity I may then be written as

I () = ] I (T, (9)
n=1
where
T*
In(T,u) = Io dt' Jn(r',u) k(t-t',u) . (10)

The calculations, which involved a double numerical integra-
tion in order to obtain %1 from Jn-l in accordance with equation (8),
were performed on an IBM 709l Model 1; the time for one 1teration
with the A operator varied from .2 minute to asbout .7 minute, de-
pending on the numer of points used for the integrations, which
depended in turn on the asymmetry of the phase function. Simpson's

rule was used. If a sufficient numer of terms n, are computed,
Jno =11Jno_1, where n 1s the maximum eilgenvalue of A and is inde-
pendent of t and of angle (Leonard and Mullikin 196l). The remainder
of the series (8) may then be replaced by a geometric series. By
varying the number of points used for the integrations and the value
of ny, it was found that the computed results are accurate to about
1l per cent.

The particular phase function used for most of the calculations

was that first introduced into astrophysics by Henyey and Greenstein

(1941)




o c(cos asg) = 1-g2 ; (1)
(14g2-2g cos a)3’?
which gives a sharp forward peask in the scattering using only one
parameter. This parameter, g, which may be called the asymmetry
factor, is the average over the unit sphere of the cosine of the
scattering angle, weighted by the phase function (see Irvine 1965).
For some of the computations a sum of two such phase functions was

used

s(cos @) = b o (g) + (1-b) &,.(g) - (12)

This allowed the introduction of ﬁeaks in both the forward and
baclkward directions of scattering.

Figure 1 shows the phase functions which were used for
numerical computations. Their significance is explained in

Table 1.

IV. Comparison with Approximete Methods

The present method is "exact" in the sense that it provides
a numerical approximation to an exact solution of equation (1), and
this approximation can be made arbitrarily close to the exact solu-
tion if sufficient computer time is used. In contrast, we shall
call those methods "approximate" which are not based on an exact
solution of our idealized problem. Such methods fall into two cate-
gories: those that take into account the asymmetry of the phase
function, but treat the multiple scattering problem only approxi-
mately; and those that utilize exact solutions of the equation of

transfer, but use a simplified phase function. The first can say
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little about the intensity I as a function of angle;'they may, how-
ever, provide a good approximation to the total flux reflected or
transmitted by a layer. TIllustrations are discussed in § a) below.
The second have frequently been used in an attempt to obtain at
least qualitative informatiqn about the angular distribution of
radiation. Examples are given in sb).

It must be stressed that our ldealized problem differs in
Several respects from.even the simplest physicelly realizable
situations (cf. van de Hulst and Irvine 1962). To comment on just
two points: first of all, we have here neglected polarization.

Apart from the loss of information which results, errors are intro-
duced into the resultant intensity even irf the ,unscattered light

is iniﬁially unpolarized. For Raylelgh scattering, these errors are
negligible for very thin layers (single scattering dominant) and are
of the order of 10 per cent for a semi-infinite atmosphere (Chandra-
sekhar 1960). The polarization due to single scattering will be

less for sphericsl drops or for randomly oriented irregular particles.
Hence, the error due'tb neglect of polarization should be less than
in the Rayleigh case, except for a situation with aligned, asymmetric
particles (such as might occur in the presence of a magnetic field).
Secondlj, the phase functions, such as eq. (12), used for the exact
calculations correspond only approximately to those of real particle
distributions (see Figure 1). We are interested only in the quali-
tative nature of the radiation field for large particle multiple
scattering, however, and not in the details of specific situations:
consequently, the omission of rainbows and related phenomena is not

important.
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In Figures 2 - 9 the full curves give the Neumann solution
corresponding to the phase function that labels the curve (see
Table 1), while the dashed curves are various approximations.
In Figures 4 - 9, © represents the angle to the outward normal

at the surface considered.

a) Albedo of a layer

The totel reflectivity or albedo A of a layer is of vital
importance to computations of atmospheric heat balance. Figure 2
shows the albedo of a layer of optical thicimesst* for normal inci-
dence and two choices of the phase function. As 1s to be expected,
the albedo is much larger for isotropic scattering than for forward-
directed scattering. The approximation (dashed curves) shown is
the famililar two-stream theory, in the formulation of Chu and
Churchill (1955). This approximation produces very good results
for normal Incidence and thin layers. For larger angles of inci-
dence the two-stream theory breaks down, but comparable accuracy
could perhaps be obtained by using a six-stream theory such as that
of Chu and Churchill (1955). |

Diffusion theory has frequently been applied to problems 6f
radlative or neutron transport (Glasstone and Edlund 1952). 1In its
standard form this method 1s useful if the distribution of sources
in the layer 1s reasonably homogeneous, and if the point considered
is not too near the boundary of the kayer (say 2 s 1t s 1% - 2),
These conditions are not fulfilled for reflection and transmission
of uni-directional radiation by a plane layer of large particles.

To study the albedo of terrestrial clouds, Fritz (195l) proposed a
modified diffusion theory in which only light that has been scattered

by at least 60° away from the direction of the incident beam contri-




butes‘to the source term in the diffusion equation. This approximation
works very well for normal incidence and thin layers (Fig. 2).

The albedo of a layer of unit opticel thickness for various
values of the angle of incidence is showm in Figure 3 for two
choices of phese function. The dashed curve is taken from Fritz
(195L). Fritz's main result, the sharp Iincrease in the albedo of
a cloud for large angles of incidence, is confirmed by the exact
calculations. The difference between this curve and the exact results
at large ¥p may be due in part to the use of slightly different phase
functions; it probably also reflects the loss in accuracy which

Fritz anticipated for large zenith angles.

b) Intensity

Let us now consider the variation with angle of the intensity
emanating from é plane scattering layer. We shall comﬁare with the
present calculations two approaches that have been used in thelpast:
(1) exact solutions to the equations of transfer obtained for only
slightly elongated phase functions; and (il) approximate methods
based on the use of exact expression for first order large particle
scattering.

(1) Several authors (e.g. Horak 1950, and Harris 1941) have hoped
that in certain situations the diffuse intensity produced by large
particle multiple scattering would not differ qualitatively from
that obtained with a phase function consisting of a three-, two-,
or even one-term expansion in Legendre polynomlals.

Let us test this idea for a thin layer. To eliminate any
preferred direction resulting from the initial conditions, consider

a scattering layer with a uniform distribution of internal sources

(eq. [3b); this model has been used to compute a first order approxi-




mation to the diffuse light in the CGalaxy by Horak 1952 and van de
Hulst and Davis 1961). Although the intensity I(s) emitted by such
a layer differs little among the cases B, C, and D of Table 1 (Horek
1952, and unpublished calculations by the author), considerable dif-
ferences develop for more elongated phase functions (Fig. 4). The
relative difference between the intensities corresponding to the

two phase functions in Figure li decreases as t* increases, but the
process is very slow. That this difference is not primarily a
result of low-order scattering can be shown by an examination of

the eigenfunctidns, Ino, which differ even more than the total
diffuse intensities. 1In other words, even after the photon has

been scattered many times, it still knows that the phase function of
the layer is asymmetric (essentlally because it can "see" the
boundaries).

For the more asymmetric initial conditions (eq. [ 3al) typical
of planetary problems, the use of a two- or even a three-term Le-
gendre expansion of the phase function gives resuits for the dif-
fuse reflection which may differ by a factor of 2 or 3 from those
for large particle scattering (Fig. 5), while the diffuse trans-
mission is qualitatively different. A limited Legendre expansion
can be made more elongated if negative scattering is allowed at
certain angles (Churchill et al. 1961). This procedure does not
bring much improvement in the diffuse transmission, however, and
is entirely inappropriate for the diffuse reflection. In Figures
6 and 7 curves F and G were obtained for two- and three-term Legendre
expansions for which the first (and first and second) moments were

chosen to equal those of the function E, for which the diffuse re-

flection and transmission are also shown.
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The hope has sometimes been expressed that one could approxi-
mate an elongated phase function, such as that for cloud droplets,
by isotropic scattering if the radiation scattered in the forward
peak were considered as unscattered. This corresponds to using in
the transfer equation a scattering coefficient that is some fraction
of the true value (close to 0.5, since for large particles half of
the scattered light is diffracted and is confined to the forward
peak). The large errors inherent in such an approach are clear
from Fig. 1, which shows that typical phase functions for haze and
clouds are sharply varying functions of angle over almost their
entire range. The diffuse intensity calculated in this approxi-
mation (¢ = 1, t%= t%/2 ) is labeled 6 and is compared in Figures
6 and 7b to that for the phase function E.

One might hope that the scattering for a simple phase function
such as C or D would correspond more closely to that for large par-
ticle scattering in the case of a thick layer (z* >> >1). Indeed,
within the depths of a thick, conservatively scattering layer illu-
minated from outside the intensity is independent of phase function
(Sobolev 1956). Significant departures from this independence occur
for the reflected (Romanova 1963) and the transmitted (Piotrowski 1961)
light, however.

(i1) For layers of optical thickness 1*s 1 +the Neumann solution
converges rapidly and it is natural to consider approximate solutions
based on exact first order scattering. The first order scattering
(I7) by a plane homogeneous layer can be found very easily for an
arbitrary phase function from equations (3) and (10). One may then

approximate the higher order scattering appropriate to the exact
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phase function by the corresponding scattering for simpler phase
functions. We shall consider three possible approximations of this
type -- exact first order scattering plus higher order scattering
computed for :

a. lsotropic scattering and a value of 1* equal to that used in

the exact calculation.

3. isotropic scattering and a value of 1* equal to half of that
used in the exact calculation (i.e., assuming that half the scattered
light is confined to such small angles that 1t may be treated as
unscattered). |

Y. a phase function 1 + 3g cos a, where g is chosen to equal the
asymmetry factor of the exact phase function. We shall call this
the Sobolev (1956) approximation.

Figures 6 - 9 compare the diffuse reflection and transmission
computed from the Neumenn solution for three choices of elongated
phase function with the intensities computed from the approximations
just described. We note the following points for normal incidence
and transmitted light:

1. All three approximations give similar and reasonable good results
for the forward peak 1n the transmitted light; this is due,of course,
to the large contribution of single scattering. The Sobolev approxi-
mation is slightly better in this region than approximation (a), which
is in turn slightly better than (B8).

2. For angles 8 2 }5° the Sobolev approximation may efr by a factor
of 2 or 3, becoming worse for more forward-directed ¢ . In this region
approximation (B) can five fairly good results, even for the most

asymmetric phase function tried (H in Table 1). Approximation (a)
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seems to consistently over-estimate I in this region, and not to be
ac safe an estimate as ().

3. In the intermediate range (20° ¢ o ¢ L45°) approximations (B) and
(v) seem to bracket the true intensity fairly well, while (a) may be
closer to the exact value.

Likewise we observe for the reflected light that
1. Approximation (a) is considerably worse than (B) or (y), giving
an overestimate of up to a factor 3. It does not Improve rapidly
for smaller 1.

2. If there is not a large backward peak in ¢ , the Sobolev approxi-
mation may give good values for both e < 10° andé ¢ 87°., In the
intermediate range, however, and if there is large back-scattering,
the agreement with the exact results may be only qualitatiﬁe.

3. All three approximations overe;timate the back scattering, except
when 4 has a sharp backward peak (Fig. 9b). 1In the latter case
approximation (pB) most closely fits the true curve for angles close
to the directly backscattered light.

A further corment concerning the Sobolev approximation may be
made. The X and Y functions for diffuse reflection and transmission
with a phase function ¢= 1 + 3g cos a are not tabulated for finite
layers. Consequently, unless a conslderable computational program
is undertaken, the Sobolev approximation can be used only by making
additional approximations in order to obtain the intensity corres-
ponding to such a phase function (Sobolev 1956). Thils process intro-

duces further errors (Atroshenko et al. 1962).

V. Conclusion

The previous examples show that for optically thin layers of
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large particles the albedo may be obtained with reasonable accuracy
through the use of methods which take into account the asymmetry

of the scattering but describe multiple scattering only crudely
(two-stream theory, diffusion-type theories). Such methods, how-
ever, can say little about the diffuse intensity as a function of
angle. Approximate methods based on the use of exact first order
scattering can give good results for the intensity diffusely trans-
mitted by a thin layer; the reflected intensity so obtained may be
only qualitatively correct.

This work was supported in part by the National Aeronautics
and Space Administration through Grant 89-60. The programs used
for the numerical computations were written by Jerome Cherniack
and Lane Emerson; Marietta Huguenin performed the necessary desk

calculations. Their assistance is gratefully acknowledged.
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Fig. 1 a, b, c.--Phase functions used for numerical computations (full
curves) and illustrative naturally occurring phase functions (dashed curves).

See Table 1.
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Fig. 2.--Albedo of a plane-parallel layer of optical thickness T%
1lluminated normelly as computed from the exact and from the two-stream
theory. Both isotropic (B) and forward-directed (A; see Table 1) scattering

shown. Results of Fritz (1954) lie on exact curve A.
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Fig. 3.--Albedo of & plane-parallel layer vs. angle of incidence for
isotropic (B) and forward-directed (A; see Table 1) scattering. Dashed curve

is approximation of Fritz (1954) for a cloud of water droplets.
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Diffuse Intensity
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Fig. 4.--Diffuse intensity emitted by a plane layer of optical thick-
ness T* containing a uniform distribution of internal sources for isotropic

(B) and forward-directed (A; see Table 1) scattering.
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Fig. 5.--Diffuse reflection from a plane-parallel layer of optical thick-
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ness 0.5 illuminated normally for three choices of phase function (see Table 1).
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G (see Table 1) and for curve § (isotropic scattering, = * = 0.5). Curves

@,B,Y represent approximations to curve E described in§IV. b. ii.



DIFFUSE TRANSMISSION

Fig. 7 a, b.--Diffuse transmission by a plane-parallel layer.

labeled as in Figure 6. Note omission of forward peak in (b).
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Fig. 8 8,b.--Diffuse transmission and reflection by a plane-parallel
layer of optical thickness one-half for normal incidence. Curves labeled

as in Figure 6. Note change of scale in ordinate and break in abscissa of

(a).
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Fig. 9 a,b.--Diffuse transmission and reflection by a plane-parallel
layer of unit opitcal depth for normal incidence. Exact calculations for
phase function H (see Table 1). Curves «,B,y represent approximations de-

seribed in § IV. b. ii. Note change of scale in ordinate of (a).
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